4 research outputs found

    Highly porous biomass-based capacitive deionization electrodes for water defluoridation

    Get PDF
    This research article published by Springer Nature Switzerland AG., 2019The high concentration of fluoride (F−) in water sources is the main challenge in major fluoride belts. Though capacitive deionization (CDI) with porous carbon electrodes is the promising alternative in removing charged species from aqueous solution, little has been presented on the usefulness of CDI with biomass-based electrodes in removing F− from natural water existing together with other ions such as Ca2+ and Mg2+. This study investigated the feasibility of using biomass-based electrodes for natural water defluoridation application. Porous carbon was synthesized from jackfruit peels (JFAC) through potassium hydroxide (KOH) activation. Surface morphology, pore structure, and electrochemical properties of the JFAC were investigated. The textural properties of the synthesized carbon and electrochemical characteristics of the fabricated electrodes were found to be influenced by activation temperature. Brunauer-Emmett-Teller (BET) surface area, pore diameter, pore volume, and pore surface area increased with an increase in activation temperature and KOH to carbon ratio. It was further confirmed that as the applied voltage increased from 1.2 to 2 V, the amount of adsorbed anions increased without significantly affecting the pH of the water. At 2.0 V, the electrodes showed a maximum F− adsorption efficiency and electrosorption capacity of 62% and 0.13 mg/g respectively. The electrosorption capacity depends on the initial concentration of the ion in the feed water. It was further observed that natural organic substances contained in the natural water might inhibit JFAC electrode surface and decrease its adsorption efficiency. This study provides cost-effective CDI electrode material prepared from biomass for water defluoridation

    Biogas-slurry derived mesoporous carbon for supercapacitor applications

    Get PDF
    This research article published by Elsevier Ltd., 2017This study reports on the transformation of biogas slurry into mesoporous carbon for supercapacitor electrodes. Pore structures have been modified by altering activation time, temperature and KOH/carbon mass ratio. The mesoporous carbons are successively developed as evidenced by type IV isotherms obtained in nitrogen sorption studies. BET, micropore and mesopore surface area of 515, 350, and 165 m2 g−1, respectively as well as a narrow pore width distribution of 3–4.5 nm are obtained. X-ray photoelectron results have confirmed the presence of functional groups of oxygen and nitrogen in the samples which facilitates the pseudocapacitance. The electrochemical measurements in 6 M KOH using a three electrode cell with Ag/AgCl as reference electrode and platinum as counter electrode has been performed. The materials activated at 700 °C, 3:1 KOH to carbon mass ratio, and for 120 min exhibit high specific capacitance of 289 F g−1 at a scan rate of 5 mV s−1. Shortening activation time to 30 and 60 min reduces specific capacitance to 163 and 182 F g−1, in that order. Additionally, at 3:1 KOH to carbon mass ratio and 60 min activation time, specific capacitances of 170 and 210 F g−1 at 600 and 800 °C, respectively are obtained. Moreover, specific capacitance increases with increasing the KOH to carbon mass ratio from 148 F g−1 for 1:1–163 F g−1 for 3:1 at 700 °C. Electrochemical impedance spectroscopy studies demonstrate that material has high conductivity. In addition; capacity retention of 96% after 20,000 cycles is shown at scan rate of 30 mV s−1. The study shows that high performance electrodes can be designed from biogas slurry derived porous carbon

    Fish bladder-based activated carbon/Co3O4/TiO2 composite electrodes for supercapacitors

    Get PDF
    This research article published by Elsevier B.V., 2019Cobalt oxide/titanium dioxide/activated carbon (Co3O4/TiO2/Ac) composite was synthesized using simple sol-gel method before annealing at 300 °C. Fish bladder derived porous carbon used for the composite was synthesized by pyrolysis followed by chemical activation. Both scanning electron microscopy (SEM) and X-ray diffraction displayed Co3O4 and TiO2 phases well embedded onto the carbon matrices. Cyclic voltammetry in 6 M KOH electrolyte demonstrated that the composite has an excellent specific capacity of 946 Fg-1 for Co3O4/TiO2/Ac as compared to Co3O4/Ac, TiO2/Ac, and Ac with specific capacitances of 845, 340, and 308 F g−1, respectively at 5 mVs−1. Impedance spectroscopy reveals that the composite has good capacitive behavior with a series resistance of 0.6 Ω. Besides, Co3O4/TiO2/Ac maintains 89.7% of the initial capacitance after 2000 cycles. This study shows that the synergistic effect of the metal oxides and the carbon in the composite can enhance capacitance for practical supercapacitor applications

    Status of Biomass Derived Carbon Materials for Supercapacitor Application

    Get PDF
    Environmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used as porous carbon materials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, and molten salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts on electrochemical performance
    corecore